RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2017

FIRST YEAR (BATCH 2017-20)

Date : 12/12/2017 Time : 11.00 am - 3.00 pm PHYSICS (Honours) Paper : I

Full Marks : 100

[Use a separate Answer Book for <u>each group</u>]

$\underline{Group-A}$

(Answer <u>any four</u> questions)

[4×10]

1.	a)	Evaluate $\iint (x^2 - 2xy)dx + (x^2y + 3)dy$ around the boundary of the region defined by $y^2 = 8x$ and $x = 2$ (i) directly and (ii) by using Green's theorem. [3+2] Suppose $\vec{E} = 2x\hat{i} + x^2\hat{k}$ and S is the surface of the parabolic cylinder $x^2 = 8x$ in the first
	0)	octant bounded by the planes $y = 4$ and $z = 6$. Evaluate $\iint_{s} \vec{F} \cdot \vec{n} ds$. [5]
2.	a)	By drawing a figure, geometrically show that $\vec{r}.d\vec{r} = rdr$. [3]
	b)	Show that the line integral of $\vec{F} = -\hat{i}y + \hat{j}x$ around a closed curve in XY plane is twice the area enclosed by curve. [3]
	c)	Verify stokes' theorem for $\vec{A} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$ where S is the upper half surace of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. [4]
3.	a)	Express $\vec{\nabla} \cdot \vec{A}$ in orthogonal co-ordinates. [3]
	b)	Find the volume element dv in (i) spherical and (ii) cylindrical co-ordinates. [2+2]
	c)	Given that $\vec{B} = (x^2 + 2xz)\hat{i} + 2yz\hat{j} - (z^2 + 2zx)\hat{k}$ Find a vector \vec{A} such that $\vec{B} = \vec{\nabla} \times \vec{A}$. Is the
		solution of Å unique? [3]
4.	a)	Prove that $\vec{\nabla} \cdot (\vec{A} \times \vec{r}) = \vec{r} \cdot (\vec{\nabla} \times \vec{A})$. [3]
	b)	Define a function $R_{\sigma}(x) = \frac{1}{2\sigma}$ for $(a - \sigma) < x < (a + \sigma)$
		= 0 otherwise
		Find $\int_{-\infty} R_{\sigma}(x) dx$. Under what condition $R_{\sigma}(x)$ represents Dirac-delta function. [2+1]
	c)	Show that $\delta(nx) = \frac{1}{ n } \delta(x)$. Using this relation show that delta function is an even function. [3+1]
5.	a)	Solve the following equation by the method of separation of variables.
		$3\frac{\partial u(x,y)}{\partial x} + 2\frac{\partial u(x,y)}{\partial y} = 0 \text{ given that } u(x,0) = 4e^{-x}.$ [4]
	b)	Apply the method of separation of variables to obtain a formal solution $u(x,t)$ of the problem
		which consists of the heat equation $\alpha_1^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$,
		the boundary conditions : $u(0,t) = 0 t > 0$
		u(2,t) = 0 $t > 0$
		and the initial condition $u(x,0) = 100 \sin x, 0 \le x \le 2$. [6]

- 6. a) Discuss about the regular/essential singular point of the following equation $(1-x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + \lambda y = 0$. [3]
 - b) Use the method of Frobenius to find solutions of the differential equation $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + \left(x^{2} - \frac{1}{4}\right)y = 0.$ [7]
- 7. a) Expand $f(x) = x^2$ for $-\pi \le x \le \pi$ in a fourier series.

b) Draw the graphical representation of $f(x) = x^2$ in $[-\pi, \pi]$ and based on Dirichlet's condition draw its periodic extension (i.e outside of $[-\pi, \pi]$) [2]

- c) Show that $\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$. (use the answer in (a)).
- d) Find the Fourier transform of the function $f(x) = \begin{cases} 1 & |x| < a \\ 0 & |x| > a \end{cases}$ [2]

<u>Group – B</u> (Answer <u>any three</u> questions) [3×10]

- 8. Consider a particle moving in the xy plane under the force $\vec{F}(r) = \frac{A}{r}\hat{\theta}$ where A is a constant.
 - a) Show that workdone due to displacement dr does not depend on r but only on the angle subtended. [2]
 - b) Find the total work done in each case for paths given below (for figure (i) the path is between points A and B). What property gives the force such peculiar behaviour?
 Y

- c) A particle of unit mass is projected vertically upwards in the gravitational field of earth, with initial velocity v_0 . The medium offers a resistance to motion proportional to the square of the instantaneous speed v, i.e, $R = -kv^2(k > 0)$. Write down the equation of motion and calculate the time of rise to the maximum height. [1]
- 9. a) A rocket is moving in free space far away from any gravitating matter by burning fuel at constant rate. What will be the velocity of the rocket at any time.
 - b) Consider a block of mass m and negligible dimensions sliding freely in the x-direction with velocity $\vec{v} = v\hat{i}$, as shown in the sketch. What is its angular momentum \vec{L}_A about the origin A and its angular momentum \vec{L}_B about the origin B? [4]

[1+2]

[3]

[3]

[3]

- A solid disk of mass M =2kg, radius R = 30 cm and moment of inertial I = 0.09 kgm² is mounted c) on a frictionless, horizontal axle. A light cord wrapped around the disk supports an object of mass m = 0.5 kg. Calculate the angular acceleration of the wheel, the linear acceleration of the object, and the tension in the cord.
- 10. A particle of unit mass moves under the central force of the form $f(r) = -\frac{k}{r^2}$.
 - a) Plot the effective potential for this force law. What should be the nature of orbit? [2]

[3]

[5]

[3×10]

[3]

[2]

- b) Solve the equation of motion and hence determine the nature of the orbit.
- Show that the Laplace-Runge-Lenz (LRL) vector denoted by $\vec{A} = \vec{p} \times \vec{L} k\hat{r}$ is a constant of c) motion, where \vec{p} is the linear momentum and \vec{L} is the angular momentum. [3]
- Deduce a relation between axial modulus (γ) , Young's modulus (Y) and Poison's ratio (σ) . [3] 11. a)
 - Find the depression of a cantilever beam of uniform cross-section A and weight W, when loaded b) at the free end by a weight W₀. Hence find the period of oscillation when the free end of such loaded cantilever is further displaced and set free. [5+2]
- 12. a) What are the different types of forces exist in fluid statics? Establish the condition of equilibrium in fluid statics. [1+3]
 - b) If water is flowing down a horizontal tube of circular cross-section of radius 1mm under pressure gradient of 10 dynes/cm³, find the velocity of flow at a point 0.5 mm from the centre of the tube. Given that the coefficient of viscosity of water is $0.01 \text{ gmcm}^{-1}\text{sec}^{-1}$. [4]
 - Using Stoke's law in connection with the viscous drag experienced by a moving spherical body, c) find the terminal velocity of a rain-drop with radius 10^{-5} m falling through air. (co-efficient of viscosity of air = 1.8×10^{-5} decapoise). [2]

13. The physical system looks something like this :

The following observations have been made on this system :

- if the block is pushed horizontally with a force equal to mg, the static compression of the spring • is equal to h.
- the viscous resistive force is equal to mg if the block moves with a certain known speed u. •
- Write the differential equation that describes the position of mass using m, b, K. [1] a) [2]
- Express the differential equation in terms of h and u. b)
- Answer the following questions for the special case that $u = 3\sqrt{gh}$. c)
 - What is the angular frequency of the damped oscillations? i)
 - ii) After what time, expressed as a multiple of $\sqrt{\frac{h}{g}}$, is the energy down by a factor of $\frac{1}{e}$? [2]
 - iii) What is the Q of this oscillator?

14. The CO₂ molecule can be linked to a system made up of a central mass m_2 connected by equal springs of spring constant K to two masses m_1 and m_3 (with $m_1 = m_3$) as shown :

- a) Set up the equation of motion for m_1 , m_2 and m_3 .
- b) Solve the equations for the normal mode in which three masses are translated in the same direction and they do not oscillate. (Hint : Consider the case : eigenvalue $\lambda = 0$ for characteristic equation). [7]
- 15. a) Set up differential equation of a wave.

b) Whether
$$y = e^{\frac{b^2}{b^2}}$$
, b = constant, represents a wave or not?

c) Let $y = \exp[(-az^2 - bt^2 - 2\sqrt{ab}zt)]$.

 $(vt-z)^2$

- i) In what direction is the wave travelling?
- ii) What is the wave speed?
- iii) Sketch the wave for time t = 0 and for time t = 3 sec when $a = 144/cm^2$, $b = 9/sec^2$. [2]
- 16. a) Define group velocity and phase velocity. Find a relation between them. [2+2]
 - b) "Velocity of the group of matter waves is just equal to the particle velocity" prove it. [3]
 - c) For gravity waves in a liquid the phase velocity c depends on the wavelength λ according to the formula $c = A\sqrt{\lambda}$, A being a constant. Show that the group velocity is half of the phase velocity. [3]
- 17. a) Derive an expression for the velocity of plane longitudinal wave along a solid rod. Mention the assumption made. [5]
 - b) For a stretched string of length ℓ the displacement is given by

$$y(x,t) = \sum_{n=1}^{\infty} c_n \sin \frac{n\pi x}{\ell} \cos \left(\omega_n t - \phi_n\right)$$

where the symbols have their usual significance. Show that the total energy of the string is $E = \frac{M}{4} \sum \omega_n^2 c_n^2$ where M is the mass of the string.

_____ × _____

(4)

[5]

[3]

[3]

[2]

[1]

[2]